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Abstract  - This paper discusses the development of PCI 
Express Interface used for high speed data transfer to PC. 
This serial bus lane-wise architecture with scalability has 
many advantages over conventional parallel PCI bus. The 
applications that require low speed can use only one lane of 
PCI Express wherein applications that requires high speed can 
use 2, 4, 8, 16 or 32 lanes of PCI Express depending on the 
speed requirement. Each serial lane of  PCI  Express  has  data  
transfer  speed of  2.5 Giga bits  per  second  and  is  duplex. 
The interface uses Virtex-6 series of FPGA for implementing 
the PCI Express.  
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I    INTRODUCTION 
From the earliest digital computers, a means of inter-
process communication between the various components 
that built a computing framework was as important as the 
components themselves.  Since  those  early  days,  
computers  have  come  to transform the  digital  landscape 
and in  turn  became a  vital  element  in  almost  every  
process.  All this extra demand on computing power 
necessitated the rapid development and production of faster 
processors and co-processors. But as processor clock 
frequencies and memory sizes get increased, the simple bus 
inter-connecting all these blocks lagged behind to become 
one of the weakest links in the computing chain. In order to 
meet the demand of high-speed digital data processing and 
achieve high-speed communication between digital front-
ends and pc, we implement a transmission system based on 
PCI-Express protocol. 
The first IO buses generation was introduced in the 1980s, 
including the Industry Standard Architecture (ISA), which 
enables a bandwidth of 16.7 Mbytes/s.  Extended ISA 
(EISA) and Video Electronics Standards Association 
(VESA) are other buses of this generation. The second IO 
buses generation was introduced in 1990s.  In 1993 a 32-bit 
PCI 33 MHz bus was released to deliver a bandwidth of 
133 Mbytes/s and a 64-bit PCI bus that delivers a 
bandwidth of 266 Mbytes/s [1]. However the increase in the 
processor speeds and the bandwidth needs of newer IO 
technologies, the PCI bus frequency was  increased  in  
1995  from  33  to  66  MHz,  to  increase the bandwidth 
from 133 Mbytes/s to 266 Mbytes/s for a 32-bit PCI, and 
from 266 Mbytes/s to 533 Mbytes/s for a 64-bit PCI, 

correspondingly [2]. Several limitations of the PCI 66 MHz 
bus and the emerging of new high end system technologies 
that continued demand for higher bandwidths led in 1999 to 
the release of a new derivation of the PCI called the PCI-X 
bus. The PCI-X bus has frequencies of 66 and 133 MHz 
and enables a bandwidth up to 1 Gbytes/s. These 
frequencies were increased to 266 and 533 MHz in 2002, to 
increase the bandwidth provided up to 4 Gbytes/s [2]. 
Another bus system in the second generation is the 
Accelerated Graphics Port (AGP). However, in order to 
meet the higher bandwidth requirements and to satisfy the 
bandwidth hungry devices, a new bus system was still 
needed.  
The latest generation IO bus system is the PCIe. It is 
evolved from the PCI and overcame the limitations of it. An 
x1 PCIe bus provides theoretically a bandwidth of 500 
Mbytes/s, an x16 PCIe can provide up to 8 Gbytes/s, and a 
x32 provides 16 Gbytes/s [2]. In this paper, the capabilities 
of this PCIe bus system are demonstrated by designing and 
simulating a PCIe based system. This system enables data 
communication between the CPU through the Root 
Complex and the Endpoint device. It also offers an 
overview of the physical and transaction layers of PCI 
Express and the benefits of PCI Express. 
 

II PCI EXPRESS 
PCI Express, the next-generation of the PCI bus, was 
introduced to overcome the challenges of PCI. A PCI 
Express topology contains a Bridge and many endpoints 
(I/O devices) as shown in Figure 1. The switch replaces the 
multi-drop bus and is used to provide fan-out for the I/O 
bus. A PCI Express switch provides fan-out capability and 
enables a series of connectors for add-in, high-performance 
I/O. A switch provides peer-to-peer communication 
between different endpoints and their traffic without 
involving the host bridge provided processes do not involve 
cache-coherent memory transfers. 
The PCI Express bus implementation is similar to a point to 
point network protocol utilizing dedicated lines, flow 
control, error detection and re-transmissions. Despite this 
fact it behaves and interacts with other components as its 
old versions using a load-share flat-address space memory 
architecture derived PCI addressing model. 
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Fig 1 Switched Fabric Serial Interconnect Bus 

III PCI EXPRESS ARCHITECTURE 
PCIe has a layered architecture as shown in Figure 2. It 
includes the Transaction Layer, the Data Link Layer and the 
Physical Layer. On the top of these 3 layers the Software 
Layer, or device core exists. Each of these layers is further 
divided into two: transmitter and receiver. The transmitter 
is responsible   for processing the TLPs requested from the 
device core before transmitting across the PCIe link. The 
receiver processes the incoming TLPs before sending them 
to the device core. To demonstrate the functionality of the 
PCI Express protocol and for the purpose of this paper, 32-
bit addressable memory write/read and Completion with 
Data (CPLD) TLPs will be considered.   
The  memory  write  TLP  is  considered  to  be  a  posted 
transaction where the requester transmits a request TLP to   
the   completer.   This   in   turn   does   not   return   a 
completion   TLP   back   to   the   requester,   unlike   the 
memory  read  TLP,  where  the  completer  is  supposed  to 
return  a  completion  TLP  back  to  the  requester.  The 
completer returns either a CPLD, if it is able to provide the 
requested data, or a Completion without data (CPL), if it 
fails to obtain the requested data. Figure 2 also shows the 
PCIe TLP.  The device core sends to the Transaction Layer 
the information   required to assemble the TLP. This 
information contains the header and the Data Payload, if 
exists.   
The main functionality of the Transaction Layer is the 
generation of TLPs to be transmitted across the PCIe link 
and the reception of TLPs received from the PCIe link. This 
layer appends a 32-bit End to End Cyclic Redundancy 
Check (ECRC) to the TLP. These 32 bits are stripped out 
by the same layer at the receiver side. The Data Link Layer 
(DLL) is responsible for ensuring a reliable data transport 
on the PCIe link. The received TLP from the transaction  
layer  is  concatenated  with  a 12-bit sequence ID and a 32-
bit  Link  CRC  (LCRC) as shown in Figure 2 [4]. These 
added bits are stripped out from the incoming TLP by the 
same layer in the receiving device before being transferred 
to the Transaction Layer. 
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Fig 2 Transaction Layer Packet 

The physical layer of a PCIe device is responsible for 
driving and receiving the Low Voltage Differential Signals 
(LVDS) at a high speed rate of 2.5 Gbps each way. It 
interfaces the device to the PCIe fabric. Such an interface is 
scalable to deliver a higher bandwidth. The TLPs are 
transferred to this layer for the purpose of transmission 
across the link. This layer also receives the incoming TLPs 
from the link and sends them to the Data Link Layer.  This 
layer appends 8-bit Start and End framing    characters    to    
the    packet    before being transmitted.  The physical layer 
of the receiving device in-turn strips out these characters 
after recognizing the starting and ending of the received 
packet, and then forwards it to the Data Link Layer. In 
addition to that, the physical layer of the  transmitter  issues  
Physical  Layer  Packets  (PLPs) which   are   terminated   
at   the   physical   layer   of   the receiver,  such  PLPs  are  
used  during  the  Link  Training and  Initialization  process.  
In this process the link is automatically configured and   
initialized for normal operation; no software is involved.  
During  this  process the  following features  are  defined:  
link  width,  data  rate of  the  link,  polarity  inversion,  lane  
reversal,  bit/symbol lock per lane, and lane-to-lane deskew 
(in case of multi-lane link) [2]. 

 
IV   PCI EXPRESS ENDPOINT DESIGN 

In this paper, the x1 PCIe Endpoint is considered.  In Figure 
1, the Endpoint is an intelligent device which acts as a 
target for downstream TLPs from the CPU through the 
Root Complex and as an initiator of upstream TLPs to the 
CPU.  This Endpoint generates or responds to Memory 
Write/Read transactions. When the Endpoint acts as a 
receiver, the CPU issues a store register command to a 
memory mapped location in the Endpoint. This is done by 
having the Root Complex generate a   Memory   Write   
TLP   with   the   required memory  mapped  address  in  the  
Endpoint,  the  payload size  (a  DW  in  this  design),  byte  
enables  and  other Header  contents.  This TLP moves 
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downstream through the PCIe fabric to the Endpoint.  
Routing of the TLP in this case is based on the address 
within its Header. A termination  of  the  transaction  takes  
place  when  the Endpoint  receives  the  TLP  and  writes  
the  data  to  the targeted local register. To read this data 
back, the CPU issues a load register command from the 
same memory mapped location in the Endpoint.  This  is  
done  by  having the Root Complex generate a  Memory 
Read TLP with  the  same  memory mapped address and  
other  Header contents. This TLP moves downstream 
through the PCIe fabric to the Endpoint.  Again,  routing  
here  is  based  on  the  same address  within  the  Header. 
Once the Endpoint receives this Memory Read TLP, it 
generates a Completion with Data TLP (CPLD). The  
Header of this CPLD TLP includes  the  ID number of  the  
Root  Complex, which  is used to route this TLP upstream 
through the fabric to the Root Complex, which in-turn 
updates the targeted CPU register  and  terminates  the  
transaction.   
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Fig 3 Root Port Model and Top-level Endpoint 
 

The other way around, is to have the Endpoint act as a bus 
master and initiate a Memory Write TLP to write 1 DW to a 
location within the system memory. This TLP is routed 
upstream toward the Root Complex which in turn writes the 
data to the targeted location in the system memory.  If  the 
Endpoint  wants  to  read  the  data  it  has  written,  it 
generates  a  Memory  Read  TLP  with  the  same  address. 
This is steered to the Root complex, which in-turn accesses 
the system memory, gets the required data and generates a 
Completion with this data TLP. This CPLD TLP is routed 
downstream to the Endpoint through the PCIe fabric. The 
Endpoint receives this TLP, updates its local register and 
terminates the transaction. Figure 3 shows the layered 
structure of the PCIe Endpoint device. There are two 
different solutions for the physical layer (PHY). In the first 
solution, this layer can be integrated with the other layers in 
the same chip.  Doing so increases the complexity of this 
chip and provides a higher integration level. This integrated 
solution has one key advantage when designing using an 
FPGA. It uses a smaller number of IO pins, which enables 
easier timing closure. An example of this integrated 
solution is offered by Xilinx in their newly introduced 
Xilinx Virtex-6 PCIe Endpoint block [5]. 

 
V RUNNING SIMULATION 

The simulation can be run on multiple environments, i.e, 
XILINX ISE, Mentor Graphics ModelSim, Synopsys VCS, 
etc.  For faster processing and better debugging the VCS 
platform was the preferred choice of compiler and simulator 
for this project. 
The files needed to perform the simulation are listed in 
board.f and xilinx_lib_vcs.f, both can be found in the 
Functional directory under simulation.  In  case  the  
simulation  is being run  on  VCS,  the files listed in  
xilinx_lib_vcs.f  have to be copied from the Xilinx 
installation  directory and placed in  the appropriate paths 
that are being pointed-to from the file list.  
Once the global variable files have been placed and the 
project directory in its entirety is available on the target 
systems, the simulation task can begin. The testbench file is 
the board.v which is also located in the same directory as 
the file lists.  The test cases to stimulate and drive the 
testbench and capture responses in located in the tests 
folder under simulation.  Various test cases can be 
developed that utilize expectation task to check response 
and the virtual program to generate and consume TLPs for 
memory or configuration transactions. 

 
VI RESULT 

The various capabilities of the PCIe bus protocol were 
demonstrated. The PCIe core was generated, configured 
and customized using the Xilinx CORE generator. In a 
modified version of a PCIe Testbench and with the help of 
the simulation tool Synopsys VCS or ModelSim, the 
functionality of the designed Endpoint was simulated and 
verified. Several test cases were conducted to simulate the 
functionality of this designed Endpoint device. 
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Fig 4 Simulation Result 

 
VII CONCLUSION 

The simulation  results  clearly show that  packet  
transmission  between  two  devices on the  bus  is taking  
place. This has helped form the basis of understanding the 
core’s operation and the intricacies related to packet 
generation transmission in particular. The Xilinx modules 
have allowed the implementer of the design to gain a 
quicker understanding of the device operation and the 
method of interfacing successfully with the core. 
The future potential of this IP Core is evident from the start 
and was one of the intended purposes stated for this project 
undertaking. As any future IP design  involving a 
microprocessor or micro-controller  requires  the  utilization  
of  bus,  the PCI  Express  IP Core  form  Xilinx  provides  
a  standard industry ready bus that  is  easily portable to an 
FPGA board, thus being practically invaluable. The 
standard itself may undergo several more iterations before it 
reaches a performance ceiling. This project has stated the 
qualities and benefits of this bus and described the practical 
usage of this core design. 
 

REFERENCES 
[1]   Don    Anderson    and    Tom    Shanley,    “PCI System 

Architecture”, MINDSHARE INC., 1999.  
[2]  Don  Anderson,  Ravi  Budruk,  and  Tom  Shanley,  “PCI Express 

System Architecture, MINDSHARE INC., 2004.  
[3]  Ajay  V.  Bhatt  “Creating  a  PCI  Express  Interconnect”, 

Technology and Research Labs, Intel Corporation, 2002.  
[4]  “PCI Express Base Specification”, Revision 3.0, November 10, 2010  
[5]   “Virtex-6  Integrated  Endpoint  Block  for  PCI  Express ”, User 

Guide, UG517 (v5.1), September 21, 2010.  
[6]   Virtex-6 FPGA Integrated Block for PCI Express - User Guide - 

Xilinx v14.3 
[7]   LogiCORE IP Virtex-6 FPGA Integrated Block v2.5 for PCI 

Express, January 18, 2012. 

 
 
 
 
 
 
 
 

 

 

 

 

Vijitha.C.V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2574-2577

www.ijcsit.com 2577




